

Case – 18 Gas Analysis

Copy Right By:
Thomas T.S. Wan
(温到祥)
April 17, 2012
All Rights Reserved

Case Background:

The compressors in any of refrigeration systems are actually performing gas compression function no matter what type of refrigerant is used for the refrigeration system. The refrigerant can be halocarbons, ammonia or hydrocarbons. In most cases, the refrigerant used for refrigeration system only consists of one gas component. For example, R-290 is 100% of propane, R-1270 is 100% of propylene, etc.

Sometime, for pipe line gas compression or in some case the refrigerant used for process refrigeration system is a mixed hydrocarbon, which consists of many gas components instead of pure refrigerant.

This case is to demonstrate the method to calculate the properties of the gas mixture.

Related Technical Data and Engineering Information for the Case:

No.	Compound	Formula	Molecular weight	Boiling point, °F., 14.696 psia	Vapor pressure, 100°F., psia	Freezing point, °F., 14.696 psia	Critical constants		
							Pressure, psia	Temperature, °F.	Volume, cu ft/lb
1	Methane	CH ₄	16.043	-258.69	(5000)	-296.46 ^d	667.8	-116.63	0.0991
2	Ethane	C ₂ H ₆	30.070	-127.48	(800)	-297.89 ^d	707.8	90.09	0.0788
3	Propane	C ₃ H ₈	44.097	-43.67	190.	-305.84 ^d	616.3	206.01	0.0737
4	n-Butane	C ₄ H ₁₀	58.124	31.10	51.6	-217.05	550.7	305.65	0.0702
5	Isobutane	C ₄ H ₁₀	58.124	10.90	72.2	-255.29	529.1	274.98	0.0724
6	n-Pentane	C ₅ H ₁₂	72.151	96.92	15.570	-201.51	488.6	385.7	0.0675
7	Isopentane	C ₅ H ₁₂	72.151	82.12	20.44	-255.83	490.4	369.10	0.0679
8	Neopentane	C ₅ H ₁₂	72.151	49.10	35.9	2.17	464.0	321.13	0.0674
9	n-Hexane	C ₆ H ₁₄	86.178	155.72	4.956	-139.58	436.9	453.7	0.0688
10	2-Methylpentane	C ₆ H ₁₄	86.178	140.47	6.767	-244.63	436.6	435.83	0.0681
11	3-Methylpentane	C ₆ H ₁₄	86.178	145.89	6.098	—	453.1	448.3	0.0681
12	Neohexane	C ₆ H ₁₄	86.178	121.52	9.856	-147.72	446.8	420.13	0.0667
13	2,3-Dimethylbutane	C ₆ H ₁₄	86.178	136.36	7.404	-199.38	453.5	440.29	0.0665
14	n-Heptane	C ₇ H ₁₆	100.205	209.17	1.620	-131.05	396.8	512.8	0.0691
15	2-Methylhexane	C ₇ H ₁₆	100.205	194.09	2.271	-180.89	396.5	495.00	0.0673
16	3-Methylhexane	C ₇ H ₁₆	100.205	197.32	2.130	—	408.1	503.78	0.0646
17	2-Ethylpentane	C ₇ H ₁₆	100.205	200.25	2.012	-181.48	419.3	513.48	0.0665
18	2,2-Dimethylpentane	C ₇ H ₁₆	100.205	174.54	3.492	-190.86	402.2	477.23	0.0665
19	2,4-Dimethylpentane	C ₇ H ₁₆	100.205	176.89	3.292	-182.63	396.9	475.95	0.0668
20	3,3-Dimethylpentane	C ₇ H ₁₆	100.205	186.91	2.773	-210.01	427.2	505.85	0.0662
21	Triptane	C ₇ H ₁₆	100.205	177.58	3.374	-12.82	428.4	496.44	0.0636
22	n-Octane	C ₈ H ₁₈	114.232	258.22	0.537	-70.18	360.6	564.22	0.0690
23	Diisobutyl	C ₈ H ₁₈	114.232	228.39	1.101	-132.07	360.6	530.44	0.0676
24	Iooctane	C ₈ H ₁₈	114.232	210.63	1.708	-161.27	372.4	519.46	0.0656
25	n-Nonane	C ₉ H ₂₀	128.259	303.47	0.179	-64.28	332.	610.68	0.0684
26	n-Decane	C ₁₀ H ₂₂	142.286	345.48	0.0597	-21.36	304.	652.1	0.0679
27	Cyclopentane	C ₅ H ₁₀	70.135	120.65	9.914	-136.91	653.9	461.5	0.059
28	Methylcyclopentane	C ₆ H ₁₂	84.162	161.25	4.503	-224.44	548.9	499.35	0.0607
29	Cyclohexane	C ₆ H ₁₂	84.162	177.29	3.264	43.77	591.	536.7	0.0586
30	Methylcyclohexane	C ₇ H ₁₄	98.189	213.68	1.609	-195.87	503.5	570.27	0.0600
31	Ethylene	C ₂ H ₄	28.054	-154.62	—	-272.45 ^d	729.8	48.58	0.0737
32	Propene	C ₃ H ₆	42.081	-53.90	226.4	-301.45 ^d	669.	196.9	0.0689
33	1-Butene	C ₄ H ₆	56.108	20.75	63.05	-301.63 ^d	583.	295.6	0.0685
34	Cis-2-Butene	C ₄ H ₆	56.108	38.69	45.54	-218.06	610.	324.37	0.0668
35	Trans-2-Butene	C ₄ H ₆	56.108	33.58	49.80	-157.96	595.	311.86	0.0680
36	Isobutene	C ₄ H ₆	56.108	19.59	63.40	-220.61	580.	292.55	0.0682
37	1-Pentene	C ₅ H ₁₀	70.135	85.93	19.115	-265.39	590.	376.93	0.0697
38	1,2-Butadiene	C ₄ H ₆	54.092	51.53	(20.)	-213.16	(653.)	(339.)	(0.0649)
39	1,3-Butadiene	C ₄ H ₆	54.092	24.06	(60.)	-164.02	628.	306.	0.0654
40	Isoprene	C ₅ H ₈	68.119	93.30	16.672	-230.74	(558.4)	(412.)	(0.0650)
41	Acetylene	C ₂ H ₂	26.038	-119 ^e	—	-114 ^d	890.4	95.31	0.0695
42	Benzene	C ₆ H ₆	78.114	176.17	3.224	41.96	710.4	552.22	0.0531
43	Toluene	C ₇ H ₈	92.141	231.13	1.032	-138.94	595.9	605.55	0.0549
44	Ethylbenzene	C ₈ H ₁₀	106.168	277.16	0.371	-138.91	523.5	651.24	0.0564
45	o-Xylene	C ₈ H ₁₀	106.168	291.97	0.264	-13.30	541.4	675.0	0.0557
46	m-Xylene	C ₈ H ₁₀	106.168	282.41	0.326	-54.12	513.6	651.02	0.0567
47	p-Xylene	C ₈ H ₁₀	106.168	281.05	0.342	55.86	509.2	649.6	0.0572
48	Styrene	C ₈ H ₁₂	104.152	293.29	(0.24)	-23.10	580.	706.0	0.0541
49	Isopropylbenzene	C ₉ H ₁₂	120.195	306.34	0.188	-140.82	465.4	676.4	0.0570
50	Methyl Alcohol	CH ₃ O	32.042	148.1(2)	4.63(22)	-143.8(22)	1174.2(21)	462.97(21)	0.0589(21)
51	Ethyl Alcohol	C ₂ H ₅ O	46.069	172.92(22)	2.3(7)	-173.4(22)	925.3(21)	469.58(21)	0.0580(21)
52	Carbon Monoxide	CO	28.010	-313.6(2)	—	-340.6(2)	507.(17)	-220.(17)	0.0532(17)
53	Carbon Dioxide	CO ₂	44.010	-109.3(2)	—	—	1071.(17)	-87.9(23)	0.0342(23)
54	Hydrogen Sulfide	H ₂ S	34.076	-76.6(24)	394.0(6)	-117.2(7)	1306.(17)	212.7(17)	0.0459(24)
55	Sulfur Dioxide	SO ₂	64.059	14.0(7)	88.(7)	-103.9(7)	1145.(24)	315.5(17)	0.0306(24)
56	Ammonia	NH ₃	17.031	-28.2(24)	212.(7)	-107.9(2)	1636.(17)	270.3(24)	0.0681(17)
57	Air	N ₂ O ₂	28.964	-317.6(2)	—	—	547.(2)	-221.3(2)	0.0517(3)
58	Hydrogen	H ₂	2.016	-423.0(24)	—	-434.8(24)	188.1(17)	-399.8(17)	0.5167(24)
59	Oxygen	O ₂	31.999	-297.4(2)	—	-361.8(24)	736.9(24)	-181.1(17)	0.0382(24)
60	Nitrogen	N ₂	28.013	-320.4(2)	—	-346.0(24)	493.0(24)	-232.4(24)	0.0514(17)
61	Chlorine	Cl ₂	70.906	-29.3(24)	158.(7)	-149.8(24)	1118.4(24)	291.1(17)	0.0281(17)
62	Water	H ₂ O	18.015	212.0	0.9492(12)	32.0	3208.(17)	705.6(17)	0.0500(17)
63	Helium	He	4.003	—	—	—	—	—	—
64	Hydrogen Chloride	HCl	36.461	-121(16)	925.(7)	-173.6(16)	1198.(17)	124.5(17)	0.0208(17)

Figure 18-1 Physical Constants of Various Hydrocarbons

*F	H ₂	N ₂	O ₂	CO	CO ₂	H ₂ O	H ₂ S	SO ₂	SO ₃	CH ₄	C ₂ H ₂	*F
-300	6.93	6.94	6.95	6.95	7.00					7.95		-300
-290	6.83	6.94	6.95	6.95	7.01					7.95		-290
-280	6.73	6.94	6.95	6.95	7.02					7.95		-280
-270	6.64	6.94	6.95	6.95	7.04					7.95		-270
-260	6.57	6.95	6.95	6.95	7.06					7.95		-260
-250	6.51	6.95	6.95	6.95	7.08					7.95		-250
-240	6.46	6.95	6.95	6.95	7.10					7.95		-240
-230	6.42	6.95	6.95	6.95	7.12					7.95		-230
-220	6.38	6.95	6.95	6.95	7.15					7.95		-220
-210	6.36	6.95	6.95	6.95	7.17					7.95		-210
-200	6.35	6.95	6.95	6.95	7.20		7.88	8.10	9.00	7.95		-200
-190	6.34	6.95	6.95	6.95	7.25		7.88	8.14	9.11	7.95		-190
-180	6.35	6.95	6.95	6.95	7.28		7.90	8.20	9.22	7.95		-180
-170	6.36	6.95	6.95	6.95	7.32		7.90	8.24	9.33	7.96		-170
-160	6.39	6.95	6.95	6.95	7.37		7.91	8.30	9.45	7.96		-160
-150	6.42	6.95	6.95	6.95	7.42		7.92	8.35	9.56	7.96		-150
-140	6.44	6.95	6.95	6.95	7.47		7.93	8.40	9.67	7.96		-140
-130	6.47	6.95	6.95	6.95	7.53		7.94	8.45	9.77	7.97		-130
-120	6.50	6.95	6.96	6.95	7.59		7.95	8.50	9.90	7.98		-120
-110	6.53	6.95	6.96	6.95	7.65		7.96	8.56	10.0	7.99		-110
-100	6.56	6.95	6.96	6.95	7.71		7.97	8.61	10.1	8.00		-100
-90	6.58	6.95	6.96	6.95	7.78		7.98	8.66	10.2	8.02		-90
-80	6.61	6.95	6.96	6.95	7.84		7.99	8.71	10.3	8.04		-80
-70	6.63	6.95	6.96	6.95	7.90		8.00	8.76	10.4	8.06		-70
-60	6.66	6.95	6.96	6.95	7.97		8.02	8.81	10.6	8.08		-60
-50	6.68	6.95	6.96	6.95	8.03		8.03	8.87	10.7	8.09		-50
-40	6.70	6.95	6.97	6.95	8.11		8.04	8.91	10.8	8.12		-40
-30	6.72	6.95	6.97	6.95	8.18		8.05	8.97	10.9	8.15		-30
-20	6.75	6.95	6.97	6.95	8.25		8.06	9.01	11.0	8.17		-20
-10	6.77	6.95	6.97	6.95	8.33		8.03	9.06	11.1	8.20		-10
0	6.78	6.95	6.98	6.95	8.38	7.98	8.09	9.12	11.2	8.23	9.68	0
10	6.80	6.95	6.98	6.95	8.45	7.99	8.10	9.18	11.3	8.26	9.79	10
20	6.82	6.95	6.98	6.95	8.51	7.99	8.12	9.23	11.4	8.29	9.90	20
30	6.83	6.95	6.99	6.96	8.58	8.00	8.13	9.28	11.6	8.33	10.0	30
40	6.85	6.95	6.99	6.96	8.65	8.00	8.15	9.33	11.7	8.37	10.1	40
50	6.86	6.95	7.00	6.96	8.70	8.00	8.16	9.38	11.8	8.41	10.2	50
60	6.87	6.95	7.00	6.96	8.76	8.01	8.17	9.43	11.9	8.45	10.3	60
70	6.88	6.95	7.01	6.95	8.83	8.02	8.19	9.48	12.0	8.49	10.4	70
80	6.89	6.96	7.02	6.96	8.89	8.02	8.20	9.53	12.1	8.54	10.5	80
90	6.90	6.96	7.02	6.96	8.95	8.03	8.22	9.59	12.2	8.59	10.6	90
100	6.90	6.96	7.03	6.96	9.01	8.03	8.24	9.64	12.3	8.65	10.7	100
110	6.91	6.96	7.03	6.96	9.06	8.04	8.25	9.69	12.4	8.70	10.8	110
120	6.92	6.96	7.04	5.97	9.12	8.05	8.27	9.74	12.6	8.76	10.9	120
130	6.92	6.96	7.05	6.97	9.19	8.06	8.28	9.79	12.7	8.82	11.0	130
140	6.93	6.96	7.06	6.97	9.24	8.06	8.30	9.84	12.8	8.86	11.1	140
150	6.93	6.96	7.07	6.97	9.30	8.07	8.32	9.89	12.9	8.95	11.1	150
160	6.94	6.96	7.08	6.97	9.35	8.08	8.34	9.94	13.0	9.01	11.2	160
170	6.94	6.96	7.09	6.98	9.40	8.09	8.36	9.98	13.1	9.08	11.3	170
180	6.94	6.96	7.10	6.98	9.46	8.10	8.38	10.0	13.2	9.14	11.4	180
190	6.95	6.96	7.11	6.98	9.51	8.11	8.39	10.1	13.3	9.21	11.5	190

Figure 18-2 Values of Various Ideal Gases Mol. Wt. Cp – Btu/Lb-Mole-°F

*F	C ₂ H ₄	C ₂ H ₆	C ₃ H ₆	C ₃ H ₈	iC ₄ H ₈	IC ₄ H ₈	IC ₄ H ₁₀	nC ₄ H ₁₀	iC ₅ H ₁₂	nC ₅ H ₁₂	nC ₆ H ₁₄	nC ₇ H ₁₆	*F	
-300	8.13	8.51	9.17	9.45			10.5	12.6						-300
-290	8.13	8.55	9.28	9.61			10.8	12.8						-290
-280	8.13	8.60	9.37	9.80			11.1	13.0						-280
-270	8.13	8.66	9.48	9.98			11.5	13.3						-270
-260	8.13	8.71	9.60	10.2			11.8	13.5						-260
-250	8.13	8.77	9.72	10.4			12.1	13.8						-250
-240	8.13	8.84	9.85	10.5			12.5	14.1						-240
-230	8.14	8.90	10.0	10.7			12.8	14.4						-230
-220	8.14	8.98	10.1	10.9			13.1	14.7						-220
-210	8.15	9.06	10.3	11.1			13.5	15.0						-210
-200	8.15	9.14	10.4	11.3			13.8	15.2						-200
-190	8.16	9.23	10.6	11.5			14.2	15.5						-190
-180	8.17	9.32	10.7	11.7			14.5	15.8						-180
-170	8.19	9.41	10.9	11.9			14.8	16.1						-170
-160	8.20	9.51	11.0	12.1			15.2	16.4						-160
-150	8.22	9.61	11.2	12.3			15.5	16.7						-150
-140	8.24	9.72	11.4	12.5			15.8	17.0						-140
-130	8.26	9.82	11.5	12.7			16.2	17.3						-130
-120	8.29	9.94	11.7	12.9			16.5	17.7						-120
-110	8.33	10.0	11.9	13.1			16.8	18.0						-110
-100	8.37	10.2	12.0	13.3	15.8	15.2	17.2	18.3	19.9	20.6	25.1	28.2	-100	
-90	8.42	10.3	12.2	13.6	16.1	15.4	17.5	18.6	20.4	21.1	25.6	29.8	-90	
-80	8.48	10.4	12.4	13.8	16.4	15.6	17.8	18.9	20.9	21.5	26.1	30.4	-80	
-70	8.55	10.5	12.5	14.0	16.7	15.9	18.1	19.2	21.4	22.0	26.6	30.9	-70	
-60	8.64	10.6	12.7	14.2	17.1	16.1	18.4	19.5	21.9	22.5	27.1	31.5	-60	
-50	8.72	10.8	12.9	14.5	17.4	16.4	18.7	19.8	22.3	22.9	27.7	32.1	-50	
-40	8.82	10.9	13.1	14.7	17.7	16.7	19.0	20.1	22.8	23.4	28.2	32.7	-40	
-30	8.89	11.1	13.2	14.9	18.0	17.0	19.4	20.4	23.3	23.8	28.7	33.3	-30	
-20	9.04	11.2	13.4	15.2	18.3	17.3	19.7	20.7	23.8	24.3	29.2	33.9	-20	
-10	9.17	11.3	13.6	15.4	18.6	17.6	20.1	21.0	24.3	24.8	29.7	34.5	-10	
0	9.32	11.4	13.7	15.6	18.9	18.0	20.4	21.3	24.8	25.2	30.2	35.1	0	
10	9.46	11.6	13.8	15.9	19.2	18.3	20.7	21.5	25.2	25.7	30.7	35.7	10	
20	9.60	11.7	14.1	16.1	19.5	18.6	21.1	21.8	25.7	26.2	31.3	36.3	20	
30	9.74	11.9	14.3	16.4	19.9	19.0	21.5	22.1	26.2	26.6	31.8	36.9	30	
40	9.88	12.0	14.5	16.6	20.2	19.3	21.8	22.4	26.6	27.0	32.3	37.5	40	
50	10.0	12.2	14.7	16.9	20.5	19.6	22.2	22.6	27.1	27.5	32.8	38.1	50	
60	10.2	12.3	14.9	17.1	20.8	19.9	22.5	22.9	27.6	27.9	33.3	38.7	60	
70	10.3	12.5	15.1	17.4	21.1	20.2	22.9	23.2	28.0	28.4	33.8	39.3	70	
80	10.4	12.6	15.3	17.6	21.4	20.5	23.2	23.4	28.5	28.8	34.4	39.8	80	
90	10.6	12.8	15.5	17.9	21.6	20.9	23.6	23.7	28.9	29.3	34.9	40.4	90	
100	10.7	13.0	15.8	18.2	22.0	21.2	24.0	24.1	29.4	29.7	35.4	41.1	100	
110	10.9	13.1	16.0	18.4	22.2	21.5	24.3	24.4	29.8	30.1	35.9	41.7	110	
120	11.0	13.3	16.2	18.7	22.5	21.8	24.7	24.8	30.3	30.6	36.4	42.2	120	
130	11.1	13.4	16.4	19.0	22.8	22.1	25.0	25.1	30.8	31.0	37.0	42.8	130	
140	11.3	13.6	16.6	19.2	23.1	22.4	25.4	25.5	31.2	31.5	37.5	43.4	140	
150	11.4	13.8	16.8	19.5	23.4	22.7	25.8	25.8	31.7	31.9	38.0	44.0	150	
160	11.5	13.9	17.0	19.8	23.7	23.0	26.1	26.1	32.1	32.3	38.5	44.6	160	
170	11.7	14.1	17.2	20.1	24.0	23.3	26.5	26.5	32.6	32.7	39.0	45.2	170	
180	11.8	14.3	17.4	20.4	24.3	23.6	26.9	26.8	33.0	33.2	39.5	45.8	180	
190	11.9	14.5	17.6	20.6	24.6	24.0	27.2	27.2	33.4	33.6	40.0	46.4	190	

Figure 18-3 Values of Various Ideal Gases Mol. Wt. Cp – Btu/Lb-Mole-°F

Cogitation

When making gas compression calculation, the gas physical properties such as molecular weight, critical pressure, critical temperature and the Mol. Wt. Cp. of a gas mixture required are required. If the gas is a mixture of various hydrocarbons, a calculation shall be made to find out the properties of the gas mixture. Each components of the gas mixture must be given either by percent of moles or percent of weight. If the percentages are given by percents weight, it shall be converted to percents.

The Figure 18-1 is the physical properties table for molecular weight, critical pressure, critical temperature for most of the hydrocarbon gases. The Figure 18-2 and 18-2 are the Mol. Wt. Cp at various temperatures for the hydrocarbon gases.

Figure 18-1 also shows the formula each of the hydrocarbons. Sometimes, hydrocarbon gas is expressed with numerical prefix, such as C₁ for Methane, C₂ for Ethane, iC₄ for Iso-Butane and etc, numerical prefix for gases are shown as the following:

C _n	iC _n - Iso	nC _n - Normal
Examples:		
1 Methane	12 Dodecane	22 Docosane
2 Ethane	13 Tridecane	23 Tricosane
3 Propane	14 Tetradecane	24 Tetraicosane
4 Butane	15 Pentadecane	25 Pentacosane
5 Pentane	16 Hexadecane	26 Hexacosane
6 Hexane	17 Heptadecane	27 Heptacosane
7 Heptane	18 Octadecane	28 Octacosane
8 Octane	19 Nonadecane	29 Nonacosane
9 Nonane	20 Eicosane	30 Triacontane
10 Decane	21 Heneicosane	31 Hentriacontane
11 Undecane		32 Dotriacontane
		33 Tritriacontane
		40 Tetracontane
		50 Pentacontane
		60 Hexacontane
		70 Heptacontane
		80 Octacontane
		90 Nonacaontane
		100 Hectane
		132 Dotriacontahectane

The following is the demonstration to show how to calculate the physical properties of a gas mixture:

Gas properties calculation for gas mixture when mole% is given:

1.0 Mixture of gases:

For a mixture of gas, the exact value of Mole Percent or Weight Percent must be provided for each components of the gas composition; undefined expressions such as 'Others', 'Approximately', 'Misc. Gases' and etc are not allowed. Therefore, the following undefined gas composition expression is not to be used:

Methane	89%
Ethane	4%
Propane	5%
Others	2%

The following gas composition expression is acceptable:

Methane	89%
Ethane	4%
Propane	5%
Carbon.Dioxide	2%

2.0 Chemical Formula, Mole Percents and M.F. for the mixture:

		Mole%	M.F.
Methane	CH ₄	89%	0.89
Ethane	C ₂ H ₆	4%	0.04
Propane	C ₃ H ₈	5%	0.05
Carb..Dioxide	CO ₂	2%	0.02
Total		100%	1.00

The total must be exactly equal to 100% mole percent or 1.00 for M.F.

3.0 Physical constants of the each components from Figure 18-1:

Methane, CH ₄	Molecular Weight = 16.043 Critical Pressure = 667.8 Psia Critical Temp = -116.63°F Or °R = -116.63 + 460 = 343.37°R MWcp at 80°F = 8.54
Ethane, C ₂ H ₆	Molecular Weight = 30.07 Critical Pressure = 707.8 Psia Critical Temp = 90.09°F Or °R = 90.09 + 460 = 550.1°R MWcp at 80°F = 12.6
Propane, C ₃ H ₈	Molecular Weight = 44.97 Critical Pressure = 616.3 Psia Critical Temp = 206.01°F Or °R = 206.01 + 460 = 666.0°R MWcp at 80°F = 17.6
Carbon Dioxide	Molecular Weight = 44.01 Critical Pressure = 1071 Psia Critical Temp = 87.9°F Or °R = 87.9 + 460 = 547.9°R MWcp at 80°F = 8.89

4.0 To calculate the Molecular Weight for the Gas Mixture:

The pseudo M.W. of Methane = $16.0 \times 0.89 = 14.24$.

Follow the same steps to calculate the partial M.W. for other component of the gas.

Component	Formula	M.W.	Mol %	Pseudo M.W.
Methane	CH4	16.0	89%	14.24
Ethane	C2H6	30.1	4%	1.20
Propane	C3H8	44.1	5%	2.21
Carb.Dioxide	CO2	44.0	2%	0.88
Mixture Gas			100%	18.53

Therefore, the Molecular Weight of the gas mixture is 18.53

5.0 To calculate the Critical Pressure (Psia) for the gas mixture:

The Pseudo Critical Pressure of Methane = $667.8 \times 0.89 = 594.34$.

Follow the same steps to calculate the partial critical pressure for other component of the gas.

Component	Formula	Mol %	Critical Press.	Pseudo Critical Press.
Methane	CH4	89%	667.8	594.34
Ethane	C2H6	4%	707.8	28.31
Propane	C3H8	5%	616.3	30.82
Carb.Dioxide	CO2	2%	1071	21.42
Mixture Gas		100%		674.89

Therefore, the critical pressure of the gas mixture is 674.79 Psia

6.0 To Calculate the Critical Temperature for the Gas Mixture:

Temperature used for gas compression calculation is Rankin Temperature °R instead of °F; so change all the °F to °R to calculate the mixture critical temperature.

The Pseudo Critical Temperature of Methane = $343.37 \times 0.89 = 305.60$.
Follow the same steps to calculate the partial critical temperature for other component of the gas.

Component	Formula	Mol %	Critical Temperature	Pseudo Temp. °R
Methane	CH4	89%	(-116.63 + 460) = 343.37	305.60
Ethane	C2H6	4%	(90.09 + 460) = 550.09	22.00
Propane	C3H8	5%	(206.01 + 460) = 666.01	33.30
Carb.Dioxide	CO2	2%	(87.9 + 460) = 547.90	10.96
Mixture Gas		100%		371.86

Therefore, the Critical Temperature of the Gas Mixture is 371.86°R

7.0 To Calculate the Mol. Wt. Cp for the Gas Mixture:

The MWcp is to be used for the calculation of the k factor. It is always associated with the temperature at the suction. Assuming the operating condition is 80°F, the example is to calculate the MWcp of the gas mixture at 80°F at compressor suction.

The Pseudo MWcp of Methane = $8.54 \times 0.89 = 7.60$.

Follow the same steps to calculate the partial MWcp for other component of the gas.

Component	Formula	Mol %.	MWcp	MWcp
Methane	CH4	89%	8.54	7.600
Ethane	C2H6	4%	12.60	0.504
Propane	C3H8	5%	17.6	0.880
Carb.Dioxide	CO2	2%	8.89	0.178
Mixture Gas		100%		9.162

Therefore, the MWcp of the Gas Mixture at 80°F is 9.162

8.0 Gas Analysis Table:

Component	Formula	M.W.	Mol %	Pseudo	Critical	Critical	MWcp	Component	Pseudo	
				M.W.	Press.	Temp.		Press.	Temp.	MWcp
Methane	CH4	16.0	89%	14.24	668	343	8.54	595	305	7.600
Ethane	C2H6	30.1	4%	1.20	708	550	12.60	28	22	0.504
Propane	C3H8	44.1	5%	2.21	616	666	17.6	31	33	0.880
Carb.Dioxide	CO2	44.0	2%	0.88	1071	548	8.89	21	11	0.178
Mixture Gas		100%	18.53				675	371	9.162	

Therefore, physical properties of the gas mixture are as the following:

MW of gas mixture:	18.53
Critical Pressure:	675 Psia
Critical Temperature:	371°R
MWcp at 80°F:	9.162

Converting Weight Percents to Mole Percent for gas mixture:

As indicated earlier, the properties calculation for gas mixture are based on Mole%, therefore, if only Wt% is given for the gas flow, the Wt% should be converted into Mol% in order to calculate the gas properties of the mixture. The steps to convert the Wt% to Mol% are as the following:

(1) Components of mixture gas, Wt% given:

Propane	C ₃ H ₈	75.90% by weight
Methane	CH ₄	8.48%
Ethane	C ₂ H ₆	7.95%
n-Butan	n-C ₄ H ₁₀	7.67%

(2) Find the molecular weight of each component of the gas:

Molecular weight		
Propane	C ₃ H ₈	44.094
Methane	CH ₄	16.042
Ethane	C ₂ H ₆	30.068
n-Butan	n-C ₄ H ₁₀	58.120

(3) Convert the Weight Percent to Mole Percent:

Calculate the Mol Gas per 100# of Mixture for Propane component:

$$= \frac{\text{Wt\%}}{\text{MW}} = \frac{75.90}{44.094} = 1.7213$$

Same step to calculate the value for other gas components and the result is as the following:

	MW	Wt%	Mol Gas Per 100# Mix.
Propane, C ₃ H ₈	44.094	75.90	1.7213
Methane, CH ₄	16.042	8.48	0.5286
Ethane , C ₂ H ₆	30.068	7.95	0.2644
n-Butan, n-C ₄ H ₁₀	58.120	7.67	0.1320
		100.00%	2.6463

Total Lb. Mol per 100 Lbs gas is 2.6463

$$\text{Mol\% for Propane gas} = \frac{1.7213}{2.6463} = 65.05 \text{ Mol\%}$$

Follow the same steps to calculate the Mole% for other gas component and the result is shown below:

	MW	Wt%	Mol Gas Per 100# Mix.	Mol %
Propane, C ₃ H ₈	44.094	75.90	1.7213	65.05
Methane, CH ₄	16.042	8.48	0.5286	19.98
Ethane , C ₂ H ₆	30.068	7.95	0.2644	9.99
n-Butan, n-C ₄ H ₁₀	58.120	7.67	0.1320	4.98
		100.00%	2.6463	100.0%

(4) Gas mixture in Mole percent:

Propane	C ₃ H ₈	65.05% by Mole
Methane	CH ₄	19.98%
Ethane	C ₂ H ₆	9.99%
n-Butan	n-C ₄ H ₁₀	4.98%